Inhibitory networks of fast-spiking interneurons generate slow population activities due to excitatory fluctuations and network multistability.

نویسندگان

  • Ernest C Y Ho
  • Michael Strüber
  • Marlene Bartos
  • Liang Zhang
  • Frances K Skinner
چکیده

Slow population activities (SPAs) exist in the brain and have frequencies below ~5 Hz. Despite SPAs being prominent in several cortical areas and serving many putative functions, their mechanisms are not well understood. We studied a specific type of in vitro GABAergic, inhibition-based SPA exhibited by C57BL/6 murine hippocampus. We used a multipronged approach consisting of experiment, simulation, and mathematical analyses to uncover mechanisms responsible for hippocampal SPAs. Our results show that hippocampal SPAs are an emergent phenomenon in which the "slowness" of the network is due to interactions between synaptic and cellular characteristics of individual fast-spiking, inhibitory interneurons. Our simulations quantify characteristics underlying hippocampal SPAs. In particular, for hippocampal SPAs to occur, we predict that individual fast-spiking interneurons should have frequency-current (f-I) curves that exhibit a suitably sized kink where the slope of the curve decreases more abruptly in the gamma frequency range with increasing current. We also predict that these interneurons should be well connected with one another. Our mathematical analyses show that the combination of synaptic and intrinsic conditions, as predicted by our simulations, promotes network multistability. Population slow timescales occur when excitatory fluctuations drive the network between different stable network firing states. Since many of the parameters we use are extracted from experiments and subsequent measurements of experimental f-I curves of fast-spiking interneurons exhibit characteristics as predicted, we propose that our network models capture a fundamental operating mechanism in biological hippocampal networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Focal Cortical Lesions Induce Bidirectional Changes in the Excitability of Fast Spiking and Non Fast Spiking Cortical Interneurons

A physiological brain function requires neuronal networks to operate within a well-defined range of activity. Indeed, alterations in neuronal excitability have been associated with several pathological conditions, ranging from epilepsy to neuropsychiatric disorders. Changes in inhibitory transmission are known to play a key role in the development of hyperexcitability. However it is largely unk...

متن کامل

A neural mass model of CA1-CA3 neural network and studying sharp wave ripples

We spend one third of our life in sleep. The interesting point about the sleep is that the neurons are not quiescent during sleeping and they show synchronous oscillations at different regions. Especially sharp wave ripples are observed in the hippocampus. Here, we propose a simple phenomenological neural mass model for the CA1-CA3 network of the hippocampus considering the spike frequency adap...

متن کامل

Synaptic Mechanisms of Tight Spike Synchrony at Gamma Frequency in Cerebral Cortex.

UNLABELLED During the generation of higher-frequency (e.g., gamma) oscillations, cortical neurons can exhibit pairwise tight (<10 ms) spike synchrony. To understand how synaptic currents contribute to rhythmic activity and spike synchrony, we performed dual whole-cell recordings in mouse entorhinal cortical slices generating periodic activity (the slow oscillation). This preparation exhibited a...

متن کامل

Fluctuating Inhibitory Inputs Promote Reliable Spiking at Theta Frequencies in Hippocampal Interneurons

Theta-frequency (4-12 Hz) rhythms in the hippocampus play important roles in learning and memory. CA1 interneurons located at the stratum lacunosum-moleculare and radiatum junction (LM/RAD) are thought to contribute to hippocampal theta population activities by rhythmically pacing pyramidal cells with inhibitory postsynaptic potentials. This implies that LM/RAD cells need to fire reliably at th...

متن کامل

Asynchronous Rate Chaos in Spiking Neuronal Circuits

The brain exhibits temporally complex patterns of activity with features similar to those of chaotic systems. Theoretical studies over the last twenty years have described various computational advantages for such regimes in neuronal systems. Nevertheless, it still remains unclear whether chaos requires specific cellular properties or network architectures, or whether it is a generic property o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 32 29  شماره 

صفحات  -

تاریخ انتشار 2012